How do you find the indefinite integral of #int (cot(x))^(1/26) csc(x)^2 dx#? Calculus Introduction to Integration Definite and indefinite integrals 1 Answer Sasha P. Oct 17, 2015 #I=-26/27cotxroot(26)(cotx) +C# Explanation: I presume that you mean #(cscx)^2# #cotx=t => -csc^2xdx=dt# #I=int (cotx)^(1/26)(cscx)^2dx=-int t^(1/26)dt=-t^(27/26)/(27/26)+C# #I=-26/27cotxroot(26)(cotx) +C# Answer link Related questions What is the difference between definite and indefinite integrals? What is the integral of #ln(7x)#? Is f(x)=x^3 the only possible antiderivative of f(x)=3x^2? If not, why not? How do you find the integral of #x^2-6x+5# from the interval [0,3]? What is a double integral? What is an iterated integral? How do you evaluate the integral #1/(sqrt(49-x^2))# from 0 to #7sqrt(3/2)#? How do you integrate #f(x)=intsin(e^t)dt# between 4 to #x^2#? How do you determine the indefinite integrals? How do you integrate #x^2sqrt(x^(4)+5)#? See all questions in Definite and indefinite integrals Impact of this question 2329 views around the world You can reuse this answer Creative Commons License