How do you find the fourth roots of 625i?

1 Answer
Sep 7, 2016

Using cisθ=cosθ+isinθ, the roots are

5cis(π8),5cis(58π),5cis(98π)and5cis(138π)
.
=5(±2+22±i222)

Explanation:

Using cisθ for cos theta +i sin theta#,

cis((2kπ+π2)i)=cis(π2i)=i, for k=0, +_1, +-2, +-3, ...

So, (625i)14=62514(cis((2kπ+π2)i)=cis(π2i))14

=5(cis(2kπ+π24)i),k=0,1,2,3, omitting other k values that

produce repetitions. So, the root are

=5cis(π8),5cis(58π),5cis(98π)and5cis(138π).

Using cos(π8)=1+cos(π4)2=2+22 and,

likewise,

sin(π8)=222, the answer can be presented as

5(±2+22±i222)