How do you find the exact values of the six trig functions of angle 120? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Harish Chandra Rajpoot Jul 28, 2018 See values of all six trig. functions below Explanation: \sin120^\circ=\sin(180^\circ-60^circ)=\sin60^\circ=\sqrt3/2 \cos120^\circ=\cos(180^\circ-60^circ)=-\cos60^\circ=-1/2 \tan120^\circ=\tan(180^\circ-60^circ)=-\tan60^\circ=-\sqrt3 \cosec120^\circ=\cosec(180^\circ-60^circ)=\cosec 60^\circ=2/\sqrt3 \sec120^\circ=\sec(180^\circ-60^circ)=-\sec 60^\circ=-2 \cot120^\circ=\cot(180^\circ-60^circ)=-\cot60^\circ=-1/\sqrt3 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ? How do you find the value of cot 300^@? What is the value of sin -45^@? How do you find the trigonometric functions of values that are greater than 360^@? How do you use the reference angles to find sin210cos330-tan 135? How do you know if sin 30 = sin 150? How do you show that (costheta)(sectheta) = 1 if theta=pi/4? See all questions in Trigonometric Functions of Any Angle Impact of this question 7967 views around the world You can reuse this answer Creative Commons License