How do you find the exact values of cos 4pi/5?

1 Answer
Jun 9, 2016

=-(sqrt5+1)/4

Explanation:

We are to evalute
cos((4pi)/5)=cos(pi-pi/5)=-cos(pi/5)

This problem of evaluating cos(pi/5)can be solved by evaluating sin(pi/10) in the following way.

Let A=pi/10

=>5A=pi/2

=>3A=pi/2-2A

:.cos(3A)=cos(pi/2-2A)

=>4cos^3A-3cosA=sin2A=2sinAcosA

=>4cos^2A-3=2sinA

=>4-4sin^2A-3=2sinA

=>4sin^2+2sinA-1=0

=>sinA=(-2+sqrt(2^2-4*4* (-1)))/(2*4)

=(-2+sqrt20)/8=(sqrt5-1)/4

:.sin(pi/10)=(sqrt5-1)/4,

Now

cos((4pi)/5)=cos(pi-pi/5)=-cos(pi/5)

=-(1-2sin^2(pi/10))

=2sin^2(pi/10)-1

=2*((sqrt5-1)/4)^2-1

=2/16(5+1-2sqrt5)-1

=1/8*2*(3-sqrt5)-1

=(3-sqrt5)/4-1

=(3-sqrt5-4)/4

=-(sqrt5+1)/4