We are to evalute
cos((4pi)/5)=cos(pi-pi/5)=-cos(pi/5)
This problem of evaluating cos(pi/5)can be solved by evaluating sin(pi/10) in the following way.
Let A=pi/10
=>5A=pi/2
=>3A=pi/2-2A
:.cos(3A)=cos(pi/2-2A)
=>4cos^3A-3cosA=sin2A=2sinAcosA
=>4cos^2A-3=2sinA
=>4-4sin^2A-3=2sinA
=>4sin^2+2sinA-1=0
=>sinA=(-2+sqrt(2^2-4*4*
(-1)))/(2*4)
=(-2+sqrt20)/8=(sqrt5-1)/4
:.sin(pi/10)=(sqrt5-1)/4,
Now
cos((4pi)/5)=cos(pi-pi/5)=-cos(pi/5)
=-(1-2sin^2(pi/10))
=2sin^2(pi/10)-1
=2*((sqrt5-1)/4)^2-1
=2/16(5+1-2sqrt5)-1
=1/8*2*(3-sqrt5)-1
=(3-sqrt5)/4-1
=(3-sqrt5-4)/4
=-(sqrt5+1)/4