How do you find the exact values of cos 2pi/5?

1 Answer
Mar 16, 2016

cos(2pi/5)=(-1+sqrt(5))/4

Explanation:

Here the most elegant solution I found in:

http://math.stackexchange.com/questions/7695/how-to-prove-cos-frac2-pi-5-frac-1-sqrt54

cos(4pi/5)=cos(2pi-4pi/5)=cos(6pi/5)

So if x=2pi/5:

cos(2x)=cos(3x)

Replacing the cos(2x) and cos(3x) by their general formulae:

color(red)(cos(2x)=2cos^2x-1 and cos(3x)=4cos^3x-3cosx),

we get:

2cos^2x-1=4cos^3x-3cosx

Replacing cosx by y:

4y^3-2y^2-3y-1=0

(y-1)(4y^2+2y-1)=0

We know that y!=1, so we have to solve the quadratic part:

y=(-2+-sqrt(2^2-4*4*(-1)))/(2*4)

y=(-2+-sqrt(20))/8

since y>0, y=cos(2pi/5)=(-1+sqrt(5))/4