How do you find the exact value of the third side given triangle ABCABC, a=6, b=4, mangleC=(2pi)/3mC=2π3?

1 Answer
Nov 19, 2017

c= 2sqrt(19)c=219

Explanation:

enter image source here

Labelling triangle as diagram:

Using the Cosine Rule:

c^2=a^2+b^2-2ac*cos(C)c2=a2+b22accos(C)

c^2=(6)^2+(4)^2-(2)(6)(4)*cos((2pi)/3)c2=(6)2+(4)2(2)(6)(4)cos(2π3)

c^2=(6)^2+(4)^2-(2)(6)(4)*(-1/2)c2=(6)2+(4)2(2)(6)(4)(12)

c^2=52-(-24)=76c2=52(24)=76

c^2=76=>c=sqrt(76)=2sqrt(19)c2=76c=76=219