How do you find the exact value of the six trigonometric functions of θ when your given a point 5π/6?

1 Answer
Mar 12, 2018

As below.

Explanation:

enter image source here

enter image source here

(5pi)/6 = pi - (5pi)/6 = pi/6

Angle is in II quadrant.

Only sin, csc are positive in II quadrant and cos, sec, tan and cot are negative.

sin ((5pi)/6) = sin (pi/6) = 1/2

csc ((5pi)/6) = csc (pi/6) = 1 / sin (pi/6) = 2

tan ((5pi)/6) = - tan (pi/6) = -1/sqrt3

cot ((5pi)/6) = - cot (pi/6) = - sqrt3

cos ((5pi)/6) = -cos (pi/6) = -sqrt3/2

sec ((5pi)/6) = -sec (pi/6) = -1/ cos (pi/6) = -2/sqrt3