For the point (-4,-6) we can create a right triangle with legs of x = -4 and y =-6
Using the pythagorean theorem we get the hypotenuse.
a^2 + b^2 = c^2
(-4)^2 + (-6)^2 = hyp^2
16+36=hyp^2
52 = hyp^2
sqrt52 = hyp
2sqrt13 = hyp
The six trig functions are
sintheta = (opp)/(hyp)
costheta = (adj)/(hyp)
tantheta = (opp)/(adj)
sectheta = (hyp)/(adj)
csctheta = (hyp)/(opp)
ctntheta = (adj)/(opp)
sintheta = (-6)/(2sqrt13) = -3/sqrt13 * sqrt13/sqrt13 = -3sqrt13/13
costheta = (-4)/(2sqrt13) = -2/sqrt13 * sqrt13/sqrt13 = -2sqrt13/13
tantheta = (-6)/-4 = 3/2
sectheta = (2sqrt13)/-4 = -sqrt13/2
csctheta = (2sqrt13)/-6 = -sqrt13/3
ctntheta = (-4)/-6 = 2/3