How do you find the exact value of the six trigonometric functions of θ when your given a point (-4,-6)?

1 Answer
Jul 15, 2016

sintheta = -3sqrt13/13

costheta = -2sqrt13/13

tantheta = 3/2

sectheta = -sqrt13/2

csctheta = -sqrt13/3

ctntheta = 2/3

Explanation:

enter image source here

For the point (-4,-6) we can create a right triangle with legs of x = -4 and y =-6

Using the pythagorean theorem we get the hypotenuse.

a^2 + b^2 = c^2

(-4)^2 + (-6)^2 = hyp^2

16+36=hyp^2

52 = hyp^2

sqrt52 = hyp

2sqrt13 = hyp

enter image source here

The six trig functions are

sintheta = (opp)/(hyp)

costheta = (adj)/(hyp)

tantheta = (opp)/(adj)

sectheta = (hyp)/(adj)

csctheta = (hyp)/(opp)

ctntheta = (adj)/(opp)

sintheta = (-6)/(2sqrt13) = -3/sqrt13 * sqrt13/sqrt13 = -3sqrt13/13

costheta = (-4)/(2sqrt13) = -2/sqrt13 * sqrt13/sqrt13 = -2sqrt13/13

tantheta = (-6)/-4 = 3/2

sectheta = (2sqrt13)/-4 = -sqrt13/2

csctheta = (2sqrt13)/-6 = -sqrt13/3

ctntheta = (-4)/-6 = 2/3