How do you find the exact value of sin (pi/12)?

2 Answers
Apr 11, 2016

1/4(sqrt6 - sqrt2)

Explanation:

We want to find replacement angles for pi/12" that will produce exact values "

These must come from : pi/6 , pi/3 , pi/4

rArr sin(pi/12) = sin(pi/3 - pi/4 )

Using the appropriate color(blue)" Addition formula "

color(red)(|bar(ul(color(white)(a/a)color(black)( sin(A ± B) = sinAcosB ± cosAsinB )color(white)(a/a)|)))

rArr sin(pi/3 - pi/4) = sin(pi/3)cos(pi/4) - cos(pi/3)sin(pi/4)

Extract color(blue)" exact values from triangles "
sin(pi/3) = (sqrt3)/2 , sin(pi/4) = 1/(sqrt2)
and cos(pi/3) = 1/2 , cos(pi/4) = 1/(sqrt2)
now substitute into the right side of the expansion.

= (sqrt3)/2xx1/(sqrt2) - 1/2xx1/(sqrt2) = (sqrt3)/(2sqrt2)-1/(2sqrt2)

= (sqrt3 - 1)/(2sqrt2) " and rationalising the denominator "

gives ((sqrt3 - 1)xxsqrt2)/(2sqrt2xxsqrt2)= (sqrt6 - sqrt2)/4

Apr 11, 2016

sqrt(2 - sqrt3)/2

Explanation:

Apply the trig identity:
cos 2a = 1 - 2sin^2 a
cos ((2pi)/12) = cos (pi/6) = sqrt3/2 = 1 - 2sin^2 (pi/12)
2sin^2 (pi/12) = 1 - sqrt3/2 = (2 - sqrt3)/2
sin^2 (pi/12) = (2 - sqrt3)/4
sin (pi/12) = +- sqrt(2 - sqrt3)/2
Since sin (pi/12) is positive, then only the positive answer is accepted.
sin (pi/12) = sqrt(2 - sqrt3)/2

Check by calculator.
Calculator --> sin (pi/12) = sin 15^@ = 0.26.
sqrt(2 - sqrt3)/2 = sqrt(0.27)/2 = 0.52/2 = 0.26. OK.