How do you find the exact value of sin (pi/12)?
2 Answers
Explanation:
We want to find replacement angles for
pi/12" that will produce exact values " These must come from :
pi/6 , pi/3 , pi/4
rArr sin(pi/12) = sin(pi/3 - pi/4 ) Using the appropriate
color(blue)" Addition formula "
color(red)(|bar(ul(color(white)(a/a)color(black)( sin(A ± B) = sinAcosB ± cosAsinB )color(white)(a/a)|)))
rArr sin(pi/3 - pi/4) = sin(pi/3)cos(pi/4) - cos(pi/3)sin(pi/4) Extract
color(blue)" exact values from triangles "
sin(pi/3) = (sqrt3)/2 , sin(pi/4) = 1/(sqrt2)
andcos(pi/3) = 1/2 , cos(pi/4) = 1/(sqrt2)
now substitute into the right side of the expansion.
= (sqrt3)/2xx1/(sqrt2) - 1/2xx1/(sqrt2) = (sqrt3)/(2sqrt2)-1/(2sqrt2)
= (sqrt3 - 1)/(2sqrt2) " and rationalising the denominator " gives
((sqrt3 - 1)xxsqrt2)/(2sqrt2xxsqrt2)= (sqrt6 - sqrt2)/4
Explanation:
Apply the trig identity:
Since
Check by calculator.
Calculator -->