How do you find the exact value of sec((5pi)/12)sec(5π12)?

1 Answer
Feb 29, 2016

2/(sqrt(2 - sqrt3)223

Explanation:

sec ((5pi)/12) = 1/cos sec(5π12)=1cos. Find cos ((5pi)/12)cos(5π12)
On the trig unit circle,
cos ((5pi)/12) = cos ((6pi)/12 - pi/12) = cos (pi/2 - (pi)/12)cos(5π12)=cos(6π12π12)=cos(π2π12)=
= sin (pi/12)=sin(π12). (complementary arcs)
Find sin (pi/12)sin(π12) by using trig identity:
cos (pi/6) = sqrt3/3 = 1 - 2sin^2 (pi/12)cos(π6)=33=12sin2(π12)
sin^2 (pi/12) = 1 -sqrt3/2 = (2 - sqrt3)/4sin2(π12)=132=234
sin (pi/12) = sqrt(2 - sqrt3)/2 sin(π12)=232--> (sin (pi/12) is positive.
We have:
cos ((5pi)/12) = sin (pi/12) = sqrt(2 - sqrt3)/2cos(5π12)=sin(π12)=232
Finally, flip the value of cos.
sec ((5pi)/12) = 2/(sqrt(2 - sqrt3)sec(5π12)=223