How do you find the exact value of #csc180#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Chandra S. Oct 18, 2015 csc 180 = 1/ sin 180 = 1/0 = #oo# ( or rather undefined) Explanation: sine of #0^0# and #180^0# come on the X axis on the right and left of unit circle. Both give value zero. Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 3379 views around the world You can reuse this answer Creative Commons License