How do you find the exact 6 trigonometric ratios for the angle x whose radian measure is #(5pi)/6#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. May 5, 2015 #sin [(5pi)/6] = sin (pi- pi/6) = sin (pi/6) = 1/2# #cos [(5pi)/6)] = cos (Pi - Pi/6) = -cos (pi/6) = (-sqr3)/2# #tan ((5pi)/6) = -1/(sqr3) = -(sqr3)/3# #cot [(5pi)/6] = -sqr3# #sec [(5pi)/6] = 2# #csc [(5pi)/6] = -2/(sqr3)# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 11345 views around the world You can reuse this answer Creative Commons License