How do you find the equation of the regression line for the given data?

#[(x:, -5, -3, 4, 1, -1, -2, 0, 2, 3, -4), (y:, -10, -8, 9, 1, -2, -6, -1, 3, 6, -8)]#

1 Answer
Nov 10, 2017

#y=-0.552+2.097x#

Explanation:

The equation for the regression line is #y=a+bx, {[a=\bary-b\barx],[b=(S_(x y))/(S_(x x))]}#

#\bary=(\Sigmay)/n=-16/10=-1.6#

#\barx=(\Sigmax)/n=-5/10=-0.5#

#S_(x x)=\Sigmax^2-((\Sigmax)^2)/n=85-((-5)^2)/10=82.5#

#S_(x y)=\Sigmaxy-((\Sigmax)(\Sigmay))/n=181-80/10=173#

#b=(S_(x y))/(S_(x x))=173/82.5=2.097# #("to 2d.p")#

#a=\bary-b\barx=-1.6-2.097(-0.5)=-0.552# #("to 2d.p"}#

#y=-0.552+2.097x#