How do you find the end behavior and state the possible number of x intercepts and the value of the y intercept given y=x^4+2x^2+1y=x4+2x2+1?

1 Answer
Jan 1, 2017

y_("intercept")=1yintercept=1

No x-intercept.

Explanation:

Set X=x^2X=x2 giving:

y=X^2+2X+1y=X2+2X+1

y=(X+1)^2y=(X+1)2

+-(X+1)=sqrt(y)±(X+1)=y

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

color(blue)("Determine x intercept")Determine x intercept

Set y=0y=0

-X-1=0 => x^2=-1X1=0x2=1

x=+-sqrt(-1)" "->" "x=+-ix=±1 x=±i

color(green)("Thus there is no "x_("intercept"))Thus there is no xintercept
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

color(blue)("Determine y intercept")Determine y intercept

y_("intercept")yintercept occurs at X=0X=0

y=X^2+2X+1" "->" "y=0^2+2(0)+1 = 1y=X2+2X+1 y=02+2(0)+1=1

color(green)(y_("intercept")=1yintercept=1
Tony B