How do you find the domain of the function f(x)=sqrt(x^3-64 x) ?

1 Answer
May 19, 2017

The domain of f(x) is x in [-8,0] uu [8,+oo)

Explanation:

What's under the square root sign is >=0

So,

x^3-64x>=0

x^3-64x=x(x^2-64)=x(x+8)(x-8)

Let g(x)=x(x+8)(x-8)>=0

We build a sign chart

color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-8color(white)(aaaa)0color(white)(aaaaa)+8color(white)(aaaaa)+oo

color(white)(aaaa)x+8color(white)(aaaaa)-color(white)(aaaa)+color(white)(aaaa)+color(white)(aaaaa)+

color(white)(aaaa)xcolor(white)(aaaaaaaa)-color(white)(aaaa)-color(white)(aaaa)+color(white)(aaaaa)+

color(white)(aaaa)x-8color(white)(aaaaa)-color(white)(aaaa)-color(white)(aaaa)-color(white)(aaaaa)+

color(white)(aaaa)g(x)color(white)(aaaaaa)-color(white)(aaaa)+color(white)(aaaa)-color(white)(aaaaa)+

Therefore,

g(x)>=0 when x in [-8,0] uu [8,+oo) graph{sqrt(x^3-64x) [-27.54, 30.2, -4.14, 24.74]}