How do you find the domain and range of y = 2x^2 - 5x?

1 Answer
Aug 29, 2017

Domain: x in RR or (-oo,oo) .
Range: y >= -3.125 or [-3.125 , oo)

Explanation:

y=2x^2-5x . Domain : Any real value of x i.e x in RR

Range: y= 2(x^2-5/2x) =2(x^2-5/2x + (5/4)^2) -2 *25/16

y = 2(x-5/4)^2 -25/8 = 2( x-1.25)^2 - 3.125

Vertex is at (1.25 , -3.125) , Range : y >= -3.125

Domain: x in RR or (-oo,oo)

Range: y >= -3.125 or [-3.125 , oo)

graph{2x^2-5x [-10, 10, -5, 5]}