To find the domain, what's under the square root sign is >=0
So,
x/(x-6)>=0
Let p(x)=x/(x-6)
We need to build a sign chart
color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)0color(white)(aaaaaaaa)6color(white)(aaaaaaaa)+oo
color(white)(aaaa)xcolor(white)(aaaaaaaa)-color(white)(aaaa)+color(white)(aaaa)||color(white)(aaaa)+
color(white)(aaaa)x-6color(white)(aaaa)-color(white)(aaaa)-color(white)(aaaaa)||color(white)(aaaa)+
color(white)(aaaa)p(x)color(white)(aaaaa)+color(white)(aaaa)-color(white)(aaaaa)||color(white)(aaaa)+
Therefore,
p(x)>=0 when x in (-oo,0]uu(6,+oo)
The domain is x in (-oo,0]uu(6,+oo)
lim_(x->+-oo)p(x)=lim_(x->+-oo)x/x=1
When x=0, p(x)=0
lim_(x->6^+)p(x)=+oo
So,
the range is [0,1)uu(1,+oo)
graph{sqrt(x/(x-6)) [-25.67, 25.65, -12.83, 12.84]}