How do you find the domain and range of f(x) = sqrt x /( x^2 + x - 2)?

1 Answer
Aug 16, 2017

Domain: x>=0 | x !=1 or [0,1) uu (1,oo)
Range: f(x) in RR or (-oo ,oo)

Explanation:

f(x) = sqrt(x)/ (x^2+x-2) or f(x) = sqrt(x)/((x-1)(x+2))

For domain under root should be >=0 :. x >= 0 ,

denominator should not be zero , i.e (x-1) != 0

:. x !=1 or (x+2) != 0 or x != -2 . So restriction is

x>=0 , x !=1

Domain: x>=0 | x !=1 or [0,1) uu (1,oo)

Range: Any real number , i.e f(x) in RR or (-oo ,oo)

graph{sqrt(x)/(x^2+x-2) [-10, 10, -5, 5]} [Ans]