How do you find the domain and range of f(x) = -sqrt(2x + 4) + 3?

1 Answer
Jul 2, 2018

Domain: x >= -2 or [-2, oo)
Range: f(x) <= 3 or [3, -oo)

Explanation:

f(x) = -sqrt (2 x+4)+3

Domain : Possible input of x. Under root is undefined at <0,

so it must be >=0 :. 2 x +4 >=0 or 2 x >= -4 or x >= -2

Domain: x >= -2 or [-2, oo)

Range: Possible output value of f(x) ; sqrt (2 x+4)>=0.

Range: f(x) <= 3 or [3, -oo)

graph{-(2 x+ 4)^0.5+3 [-10, 10, -5, 5]} [Ans]