How do you find the domain and range of f(x)= ln(3x-2)?

1 Answer
Aug 7, 2018

Domain: x in (2/3, +oo)
Range: f(x) in RR

Explanation:

f(x) or y=ln(3 x-2)

Domain: Includes all values of x for which the function is defined.

f(x) is undefined when 3 x-2<=0 , So, f(x) is defined only

when 3 x-2>0 :. 3 x > 2 or x >2/3 , Therefore,

domain , x in (2/3, +oo)

Range: Includes all values y for which there is some x such

that y=ln(3x−2). Therefore, range is any real value of y

i.e, f(x) in RR.

graph{ln(3 x-2) [-10, 10, -5, 5]} [Ans]