How do you find the domain and range of f(x)= (3x-1)/(sqrt(x^2+x-2))?

1 Answer
May 7, 2017

Domain : x : (-oo,-2) uu (1,oo)
Range : f(x) : (-3, -oo) uu (3,oo)

Explanation:

f(x)= (3x-1)/sqrt(x^2+x-2) = (3x-1)/sqrt((x+2)(x-1))

Domain: denominator must not be 0 and under root must not be <0 So x+2!=0 :. x != -2 and x-1!=0 :. x != 1

For under root calculation: critical points are x=-2 and x= 1
when x <-2 , (x+2)* (x-1) = (-*- )= +

when -2 < x < 1 , (x+2)* (x-1) = (+*- ) = -

when x >1 , (x+2)* (x-1) = (=*+ )= +

So in domain : x < -2 and x> 1 or (-oo,-2) uu (1,oo)

Horizontal asymptote is at y= 3/(+-1)=+-3

So range : f(x) : (-3, -oo) uu (3,oo) graph{(3x-1)/(x^2+x-2)^0.5 [-20, 20, -10, 10]} [Ans]