How do you find the domain and range of 5x^4+x^3-19x^2-9x+8?
1 Answer
The domain is
Explanation:
Given:
f(x) = 5x^4+x^3-19x^2-9x+8
Note that this is a polynomial, so has domain the whole of
It is of even degree (
To find the minima, we can see where the derivative is zero.
f'(x) = 20x^3+3x^2-38x-9
This cubic has
Here are
graph{(y-(5x^4+x^3-19x^2-9x+8))(y-(20x^3+3x^2-38x-9)) = 0 [-2.5, 2.5, -35, 25]}
Discriminant
The discriminant
Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd
In our example,
Delta = 12996+4389760+972-874800+369360 = 3898288
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
0=400f'(x)=8000x^3+1200x^2-15200x-3600
=(20x+1)^3-763(20x+1)-2838
=t^3-763t-2838
where
Trigonometric substitution
To solve
Let
Then:
0 = t^3-763t-2638
color(white)(0) = k(k^2 cos^3 theta - 763 cos theta)-2638
color(white)(0) = (763k)/3 (4 cos^3 theta - 3 cos theta)-2638
color(white)(0) = (763k)/3 cos 3 theta-2638
So:
cos 3 theta = (2638 * 3)/(763 k)
color(white)(cos 3 theta) = (2638 * 3)/(763 * 2/3 sqrt(2289))
color(white)(cos 3 theta) = 11871/(763 * sqrt(2289))
color(white)(cos 3 theta) = 3957/582169 sqrt(2289)
Hence:
3 theta = +-cos^(-1)(3957/582169 sqrt(2289))+2npi
This yields distinct values:
t_n = 2/3 sqrt(2289) cos(1/3cos^(-1)(3957/582169 sqrt(2289))+(2npi)/3)
for
and hence:
x_n = 1/20(-1+2/3 sqrt(2289) cos(1/3cos^(-1)(3957/582169 sqrt(2289))+(2npi)/3))
for
In particular:
x_0 ~~ 1.41057
So the range of the given function is:
[f(x_0), oo)
where:
x_0 = 1/20(-1+2/3 sqrt(2289) cos(1/3cos^(-1)(3957/582169 sqrt(2289))))