How do you find the domain and range for y= (x+3)^0.5?

1 Answer
May 29, 2018

Domain: {x|x>=-3} or [-3, oo)

Range: {y|y>=0} or [0, oo)

Explanation:

y= (x+3)^0.5

y= (x+3)^(1/2)

y= sqrt(x+3)

So the domain will be all numbers where the terms under the radical are not negative (otherwise the solution is imaginary).

x+3>=0

x>=-3

Domain: {x|x>=-3} or [-3, oo)

Now the range at x=-3; y=0 but it will always be greater than or equal to 0.

Range: {y|y>=0} or [0, oo)

Here is the graph:

graph{sqrt(x+3) [-6, 14, -1.28, 8.72]}