How do you find the derivative y=xsinx + cosx?

1 Answer
Feb 26, 2015

y'=xcosx

Use the product rule for d((xsinx))/(dx):

(uv)'=u(dv)/(dx)+v(du)/(dx)

Where u=x and v=sinx

So (d(xsinx))/(dx)=xcosx+sinx(dx)/(dx)=xcosx+sinx

Now (d(cosx))/(dx)=-sinx

So combining the 2 we get:

(d(xsinx+cosx))/(dx)=xcosx+sinx-sinx=xcosx