How do you find the derivative of the function: y = arctan(cosx)?

1 Answer
Apr 8, 2018

(dy)/(dx)=(-sinx)/(1+cos^2x)

Explanation:

WE are given y=arctan(cosx)

Let y=f(x)=arctanx and g(x)=cosx

Then (dg(x))/(dx)=-sinx and y=arctan(g(x))

and according to chain rule (dy)/(dx)=(dy)/(dg(x))*(dg(x))/(dx)

Now as y=arctan(g(x)), we have (dy)/(dg(x))=1/(1+(g(x))^2)

and as g(x)=cosx, (dg)/(dx)=-sinx

Hence (dy)/(dx)=1/(1+(g(x))^2)*(-sinx)

= (-sinx)/(1+cos^2x)