How do you find the derivative of the function: y=arcsin(2x+1)?

1 Answer
Dec 30, 2016

(dy)/(dx)=2/sqrt(1-(2x+1)^2

you can expand the brackets and simply if you wish.In which case you get:

=>(dy)/(dx)=1/sqrt(-x(x+1))

Explanation:

y=sin^(-1)(2x+1)

=>2x+1=siny

differentiate wrt x

2=(dy)/(dx)cosy

=>(dy)/(dx)=2/cosy=2/sqrt(1-sin^2y

=>(dy)/(dx)=2/cosy=2/sqrt(1-(2x+1)^2

=>(dy)/(dx)=2/sqrt(1-(4x^2+4x+1))=2/sqrt(-4x(x+1))

=>(dy)/(dx)=1/sqrt(-x(x+1))