How do you find the derivative of the function: y= arccos( x^7+sqrt5 )?

1 Answer
Jan 10, 2016

dy/dx=(-7x^6)/sqrt(1-(x^7+sqrt5)^2)

Explanation:

Use the chain rule:

d/dx[arccos(u)]=-1/sqrt(1-u^2)*u'

Thus, if u=x^7+sqrt5:

d/dx[arccos(x^7+sqrt5)]=-1/sqrt(1-(x^7+sqrt5)^2)*d/dx[x^7+sqrt5]

=-1/sqrt(1-(x^7+sqrt5)^2)*7x^6

=(-7x^6)/sqrt(1-(x^7+sqrt5)^2)