How do you find the derivative of the function: y= arccos( x^7+sqrt5 )?
1 Answer
Jan 10, 2016
Explanation:
Use the chain rule:
d/dx[arccos(u)]=-1/sqrt(1-u^2)*u'
Thus, if
d/dx[arccos(x^7+sqrt5)]=-1/sqrt(1-(x^7+sqrt5)^2)*d/dx[x^7+sqrt5]
=-1/sqrt(1-(x^7+sqrt5)^2)*7x^6
=(-7x^6)/sqrt(1-(x^7+sqrt5)^2)