How do you find the derivative of the function: [ln(2-3x)/lnx]^[arccos(2-5x)][ln(23x)lnx]arccos(25x)?

1 Answer
Dec 30, 2016

See explanation.

Explanation:

For this function to be real,

x>0, 2-3x>0 and -1<=2-5x<=1x>0,23x>0and125x1

compounding,

all inclusive #1/5<=x<=3/5.

And, for this range, the two lagarithms are negative, and therefore,

the ratio is positive.

Let y =(ln(2-3x)/ln x)^(arc cos (2-5x))y=(ln(23x)lnx)arccos(25x).

ln y =arc cos(2-5x)(ln ln(2-3x)-ln ln x)lny=arccos(25x)(lnln(23x)lnlnx). Differentiating,

1/yy'=(arc cos (2-5x) )

(((-3))/(ln(2-3x)(2-3x))-1/((ln x)(x)))

-(-((-5))/sqrt(1-(2-5x)^2)))(ln ln (2-3x)-ln ln x)

y'=-(ln(2-3x)/ln x)^(arc cos (2-5x))

(arc cos (2-5x)

(3/(ln(2-3x)(2-3x))+1/((ln x)(x)))

+(5)/sqrt(1-(2-5x)^2)(ln ln (2-3x)-ln ln x)), 1/5<=x<=3/5