How do you find the derivative of the function: arcsin(sqrt(2x-1))?

1 Answer
Jul 25, 2017

The derivative is =1/sqrt(2x-1)*1/sqrt(2-2x)

Explanation:

Let y=arcsin(sqrt(2x-1))

Therefore,

siny=sqrt(2x-1)

Derivation with respect to x

dy/dxcosy=2/(2sqrt(2x-1))=1/sqrt(2x-1)

dy/dx=1/sqrt(2x-1)*1/cosy

cos^2y+sin^2y=1

cos^2y=1-sin^2y=1-(2x-1)=2-2x

cosy=sqrt(2-2x)

So,

dy/dx=1/sqrt(2x-1)*1/sqrt(2-2x)