How do you find the derivative of tan(arcsin(x))?
1 Answer
Aug 28, 2016
Explanation:
Let
Then:
x = sin(t)
So:
tan(arcsin(x)) = tan(t) = sin(t)/cos(t) = x/sqrt(1-x^2)
So:
d/(dx) tan(arcsin(x))
= d/(dx) (x (1-x^2)^(-1/2))
= (1-x^2)^(-1/2) + x*(-1/2)(1-x^2)^(-3/2)*(-2x)
= (1-x^2)(1-x^2)^(-3/2) +x^2(1-x^2)^(-3/2)
= 1/(1-x^2)^(3/2)