How do you find the derivative of tan^-1(x^2)tan1(x2)?

1 Answer
Jul 5, 2015

Assuming you don't remember the derivative of arctanuarctanu:

y = arctanx^2y=arctanx2

tany = x^2tany=x2

sec^2y ((dy)/(dx)) = 2xsec2y(dydx)=2x

(dy)/(dx) = (2x)/sec^2ydydx=2xsec2y

= (2x)/(1+tan^2y)=2x1+tan2y

Since tany = x^2tany=x2:

= color(blue)((2x)/(1+x^4)=2x1+x4

If you did remember it:

d/(dx)[arctanu] = 1/(1+u^2)((du)/(dx))ddx[arctanu]=11+u2(dudx)

u = x^2u=x2

=> 1/(1+(x^2)^2)*2x = color(darkblue)((2x)/(1+x^4))11+(x2)22x=2x1+x4