How do you find the derivative of Inverse trig function f(x) = arcsin (9x) + arccos (9x)?
1 Answer
Jun 21, 2015
Here'/ the way I do this is:
- I'll let some
-
So i get,
" "sintheta=9x" " and" "cosalpha=9x -
I differentiate both implicitly like this:
=>(costheta)(d(theta))/(dx)=9" "=>(d(theta))/(dx)=9/(costheta)=9/(sqrt(1-sin^2theta))=9/(sqrt(1-(9x)^2)
-- Next, I differentiate
-
Overall,
" "f(x)=theta+alpha -
So,
f^('')(x)=(d(theta))/(dx)+(d(alpha))/(dx)=9/sqrt(1-(9x)^2)-9/sqrt(1-(9x)^2)=0