How do you find the derivative of Inverse trig function f(x) = arcsin (9x) + arccos (9x)?

1 Answer
Jun 21, 2015

Here'/ the way I do this is:
- I'll let some " "theta=arcsin(9x)" " and some " "alpha=arccos(9x)

  • So i get, " "sintheta=9x" " and " "cosalpha=9x

  • I differentiate both implicitly like this:
    =>(costheta)(d(theta))/(dx)=9" "=>(d(theta))/(dx)=9/(costheta)=9/(sqrt(1-sin^2theta))=9/(sqrt(1-(9x)^2)

-- Next, I differentiate cosalpha=9x
=>(-sinalpha)*(d(alpha))/(dx)=9" "=>(d(alpha))/(dx)=-9/(sin(alpha))=-9/(sqrt(1-cosalpha))=-9/sqrt(1-(9x)^2)

  • Overall, " "f(x)=theta+alpha

  • So, f^('')(x)=(d(theta))/(dx)+(d(alpha))/(dx)=9/sqrt(1-(9x)^2)-9/sqrt(1-(9x)^2)=0