How do you find the derivative of f(x)=arcsin(4x)+arccos(4x)?

2 Answers
Mar 12, 2017

f'(x)=0

Explanation:

f(x)=arcsin4x+arccos4x

Let u=arcsin4x and v=arccos4x

4x=sinu and 4x=cosv

(du)/dxcosu=4

(du)/dx=4/cosu=4/(sqrt(1-sin^2u))=4/(sqrt(1-16x^2))

-(d v)/dxsinv=4

(d v)/dx=-4/sinv=-4/(sqrt(1-cos^2v))=-4/(sqrt(1-16x^2))

f'(x)=u'+v'==4/(sqrt(1-16x^2))-4/(sqrt(1-16x^2))=0

Mar 12, 2017

arcsin (x)+arccos(x) = pi/2.

Explanation:

So f'(x) = 0