How do you find the derivative of arcsin x - sqrt (1-x^2)?

1 Answer
Dec 10, 2016

We use the difference rule to differentiate the entire relation. However, let's differentiate arcsinx and sqrt(1 - x^2) individually.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

y = arcsinx -> siny = x

cosy(dy/dx) = x

dy/dx = 1/cosy

Using the identity cos^2y = sqrt(1 - sin^2y):

dy/dx = 1/sqrt(1 - sin^2y)

Since siny = x, sin^2y = x^2.

dy/dx = 1/sqrt(1 - x^2)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

y = sqrt(1 - x^2)

We let y = sqrtu = u^(1/2) and u = 1 - x^2. Differentiating each, we get y' = 1/(2u^(1/2)) and u = -2x.

By the chain rule:

dy/dx =dy/(du) xx (du)/dx

dy/dx = 1/(2u^(1/2)) xx -2x

dy/dx= -(2x)/(2(1- x^2)^(1/2))

dy/dx= -(2x)/(2sqrt(1 - x^2))

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We can now combine the two derivatives.

Call the initial function f'(x):

f'(x) = 1/sqrt(1 - x^2) - (-(2x)/(2sqrt(1 - x^2)))

f'(x) = 1/sqrt(1 - x^2) + (2x)/(2sqrt(1 - x^2))

f'(x) = (2)/(2sqrt(1 - x^2)) + (2x)/(2sqrt(1 -x^2))

f'(x) = (2 + 2x)/(2sqrt(1 - x^2))

f'(x) = (2(1 + x))/(2sqrt(1 - x^2)

f'(x) = (1 + x)/sqrt(1 - x^2)

You may want to rationalize the denominator, depending on your teacher's wishes.

Hopefully this helps!