How do you find the derivative of (arcsin x)^2?

1 Answer
Nov 18, 2017

Derivative is (2arcsinx)/sqrt(1-x^2)

Explanation:

Let us first workout derivative of arcsinx. Let y=arcsinx i.e. siny=x and hence differentiating

cosy*(dy)/(dx)=1 or (dy)/(dx)=1/cosy=1/sqrt(1-sin^2y)=1/sqrt(1-x^2)

Hence d/(dx)(arcsinx)^2=2arcsinx xx d/(dx)arcsinx

= (2arcsinx)/sqrt(1-x^2)