Let #y = u^2# and #u = arcsinx#. By the chain rule, you have:
#dy/dx = dy/(du) xx (du)/dx#
Let's start by finding the derivative of #u = arcsinx#.
#u = arcsinx -> sinu = x#
Differentiate implicitly:
#cosu((du)/dx) = 1#
#(du)/dx = 1/cosu#
Rearrange the identity #sin^2x + cos^2x = 1# for #cosx# to get #cosx = sqrt(1 - sin^2x)#.
#(du)/dx= 1/sqrt(1 - sin^2u)#
Since #sinu = x#, we have:
#(du)/dx = 1/sqrt(1 - x^2)#
Now to #dy/(du)#. By the product rule, we have, #dy/(du) = 2u#.
Call the function #y = (arcsinx)^2# #f(x)#.
#f'(x) = dy/(du) xx (du)/dx#
#f'(x) = 2u xx 1/sqrt(1 - x^2)#
#f'(x) = (2arcsinx)/sqrt(1- x^2)#
Hopefully this helps!