How do you find the derivative of arcsin(sqrt(1-x^2)) ?

1 Answer
Nov 29, 2016

d/dx arcsin(sqrt(1-x^2))= -x/(|x|sqrt(1-x^2))

Explanation:

Let y = arcsin(sqrt(1-x^2))
Then siny = sqrt(1-x^2) = (1-x^2)^(1/2)

Differentiating Implicitly and applying the chain rule;
cosydy/dx = (1/2)(1-x^2)^(-1/2)(-2x)
:. cosydy/dx = -x/sqrt(1-x^2) ... [1]

Then using the fundamental trig identity sin^2A+cos^2A-=1 we have:

cos^2y=1-sin^2y
cos^2y=1-((1-x^2)^(1/2))^2
:. cos^2y=1 - (1-x^2))
:. cos^2y=x^2
:. cosy=+-x
:. cosy=|x|

Substituting into [1] we get:
:. |x|dy/dx = -x/sqrt(1-x^2)

Leading to the solution:
dy/dx = -x/(|x|sqrt(1-x^2))