How do you find the derivative of arcsin(e^x)?

1 Answer
Nov 23, 2016

dy/dx = e^x/sqrt(1 -e^(2x))

Explanation:

y= arcsin(e^x) <=> siny=e^x

Differentiating (Implicitly) wrt x:

cosydy/dx = e^x

Using the Identity sin^y+cos^2y -= 1
:. (e^x)^2 + cos^2y = 1
:. e^(2x) + cos^2y = 1
:. cos^2y = 1 -e^(2x)
:. cosy = sqrt(1 -e^(2x))

And so:
:. sqrt(1 -e^(2x))dy/dx = e^x
:. dy/dx = e^x/sqrt(1 -e^(2x))