How do you find the derivative of arcsin(3-x^2)?

1 Answer
Dec 24, 2016

The answer is =-(2x)/(sqrt(1-(3-x^2)^2))

Explanation:

We need

cos^2theta+sin^2theta=1

(sinx)'=cosx

and (x^n)'=nx^(n-1)

So,

Let y=arcsin(3-x^2)

siny=3-x^2

(siny)'=(3-x^2)'

cosydy/dx=-2x

dy/dx=-(2x)/cosy

But,

cos^2y=1-sin^2y=1-(3-x^2)^2

cosy=sqrt(1-(3-x^2)^2)

So,

dy/dx=-(2x)/(sqrt(1-(3-x^2)^2))