How do you find the derivative of arcsin(2x + 1)?

1 Answer
Feb 17, 2017

1/sqrt(-x(x+1))

Explanation:

Use the formula: d/dx arcsin (u/a) = 1/sqrt(a^2-u^2) (du)/dx

From the equation y = arcsin(2x+1):

a = 1 and u = 2x+1 and (du)/dx = 2

so y' = 2/sqrt(1^2-(2x+1)^2)

Simplify the square root function:
1^2-(2x+1)^2 = 1-(4x^2+4x+1) = -4x^2-4x
= -4x(x+1)

so y' = 2/sqrt(-4x(x+1)) = 2/(2sqrt(-x(x+1)) )= 1/sqrt(-x(x+1))