How do you find the derivative and double derivative of the equation f(x)=xe^(-x^2)f(x)=xex2?

1 Answer
Aug 31, 2016

dy/dx=-2x^2e^(-x^2)+e^(-x^2)dydx=2x2ex2+ex2
(d^2y)/(dx^2)=2xe^(-x^2)(2x^2-3x)d2ydx2=2xex2(2x23x)

Explanation:

Given -

y=xe^(-x^2)y=xex2

dy/dx=x.e^(-x^2)(-2x)+e^(-x^2)(1)dydx=x.ex2(2x)+ex2(1)

dy/dx=-2x^2e^(-x^2)+e^(-x^2)dydx=2x2ex2+ex2

(d^2y)/(dx^2)=[-2x^2.e^(-x^2)(-2x)+e^(-x^2)(-4x)]+[e^(-x^2)(-2x)]d2ydx2=[2x2.ex2(2x)+ex2(4x)]+[ex2(2x)]

(d^2y)/(dx^2)=4x^3e^(-x^2)-4xe^(-x^2)-2xe^(-x^2)d2ydx2=4x3ex24xex22xex2

(d^2y)/(dx^2)=4x^3e^(-x^2)-6xe^(-x^2)d2ydx2=4x3ex26xex2

(d^2y)/(dx^2)=2xe^(-x^2)(2x^2-3x)d2ydx2=2xex2(2x23x)