How do you find the definite integral of #13e^-(cos(x)) sin(x) dx# from #[ 0 , pi/2]#? Calculus Introduction to Integration Definite and indefinite integrals 1 Answer Leland Adriano Alejandro Jan 18, 2016 #int_0^(pi/2) 13*e^-cos x *sin x # # dx=8.21757# Explanation: #int_0^(pi/2) 13*e^-cos x *sin x # # dx # #int 13 e^-cos x * sin x# #dx#= #13 e^-cos x# Evaluating the integral from #0# to #pi/2# #=13[e^-cos (pi/2) - e^-cos 0]# #=13[e^0 - e^-1]# #=13[1-e^-1]# #8.21757# Answer link Related questions What is the difference between definite and indefinite integrals? What is the integral of #ln(7x)#? Is f(x)=x^3 the only possible antiderivative of f(x)=3x^2? If not, why not? How do you find the integral of #x^2-6x+5# from the interval [0,3]? What is a double integral? What is an iterated integral? How do you evaluate the integral #1/(sqrt(49-x^2))# from 0 to #7sqrt(3/2)#? How do you integrate #f(x)=intsin(e^t)dt# between 4 to #x^2#? How do you determine the indefinite integrals? How do you integrate #x^2sqrt(x^(4)+5)#? See all questions in Definite and indefinite integrals Impact of this question 1323 views around the world You can reuse this answer Creative Commons License