How do you find the cube roots of -125?

1 Answer
Sep 8, 2016

5(1/2 + (i sqrt[3])/2),-5,5(1/2 - (i sqrt[3])/2)

Explanation:

Using the de Moivre's identity

-125 = 5^3 e^(i(pi+2kpi)), k=0,pm1,pm2,cdots because

e^(i(pi+2kpi)) = cos(pi+2kpi)+i sin(pi+2kpi) = -1

so

(-125)^(1/3) = (5^3 e^(i(pi+2kpi)))^(1/3) = 5e^(i(pi+2kpi)/3)

for k=0, k=pm1 we have

5e^(ipi/3),5e^(ipi),5e^(-ipi/3)

or

5(1/2 + (i sqrt[3])/2),-5,5(1/2 - (i sqrt[3])/2)