How do you find the cross product and state whether the resulting vectors are perpendicular to the given vectors <-1,1,0>times<2,1,3>?

1 Answer
Jan 4, 2017

vecaxxvecb=+3hatveci+3hatvecj-3hatveck

Explanation:

The vector cross product of two vectors veca" "&" "vecb" "

is defined as

vecaxxvecb=|veca||vecb|sinthetahatvecn

where theta" "is the angle between the vectors & #" "hatvecn" "isa unit vector mutually perpendicular to

veca" "&" "vecb" "

If the vectors are in component form, in particular:

veca=((a_1),(a_2),(a_3))and vecb=((b_1),(b_2),(b_3))

we can evaluate the cross product by the use of a determinate

vecaxxvecb=|(hatveci,hatvecj,hatveck),(a_1,a_2, a_3),(b_1,b_2,b_3)|

In this case we have

veca=((-1),(1),(0))" "vecb=((2),(1),(3))

vecaxxvecb=|(hatveci,hatvecj,hatveck),(-1,1,0),(2,1,3)|

expanding the determinant as usual

vecaxxvecb=+hatveci|(1,0),(1,3)|-hatvecj|(-1,0),(2,3)|+hatveck|(-1,1),(2,1)|

vecaxxvecb=+3hatveci+3hatvecj-3hatveck

By definition this is perpendicular tot eh original two vectors. A quick check using the dot product will confirm this.

veca.((3),(3),(-3))=((-1),(1),(0)).((3),(3),(-3))

=-3+3+0=0" "perpendicular

vecb.((3),(3),(-3))=((2),(1),(3)).((3),(3),(-3))

=6+3-3=0" "perpendicular