How do you find the critical numbers of f(x)=sinxcosx?
1 Answer
Feb 1, 2017
Critical numbers of
x \ \ = pi/4 + (npi)/2 \ \ \ \ n in ZZ
egx = +-pi/4, +-3pi/4, +-5pi/4, ...
Explanation:
We have:
f(x) = sinx cos x
Differentiating wrt
f'(x) = (sinx) (-sinx) + (cosx) (cosx)
" "= cos^2x -sin^2x
" "= cos(2x)
At a critical point
:. cos (2x) = 0
:. 2x = pi/2 + npi
:. x \ \ = pi/4 + (npi)/2 \ \ \ \ n in ZZ
Hence critical numbers of
x \ \ = pi/4 + (npi)/2 \ \ \ \ n in ZZ
egx = +-pi/4, +-3pi/4, +-5pi/4, ...
We can see these values of