How do you find the absolute maximum and absolute minimum values of f on the given interval f(x) = ln(x^2 + 3x + 9) and [-2, 2]?

1 Answer
Apr 14, 2018
  • Minimum : ln(27/4) at x=-3/2
  • Maximum : ln(19) at x=2

Explanation:

Given

f(x) = ln(x^2 + 3x + 9)

we have

f^'(x) = (2x+3)/(x^2 + 3x + 9)

and

f^{' '}(x) = ((x^2 + 3x + 9)d/dx(2x+3)-(2x+3)d/dx(x^2 + 3x + 9))/(x^2 + 3x + 9)^2
qquad = ((x^2 + 3x + 9)*2-(2x+3)^2)/(x^2 + 3x + 9)^2
qquad = (2x^2+6x+18-(4x^2+12x+9))/(x^2 + 3x + 9)^2
qquad = (9-2x^2-6x)/(x^2 + 3x + 9)^2

For a local extremum, we have

f^'(x)=0 implies 2x+3 = 0 implies x= -3/2

f^{''}(-3/2) >0

So x=-3/2 is a local minimum. The minimum value is

f(-3/2) =ln((-3/2)^2+3(-3/2)+9)=ln(27/4)

Since x=-3/2 is the only local extremum in [-2,2], the maximum is reached at an endpoint.

Now,

f(-2) = ln ((-2)^2+3(-2)+9) = ln(7)

and

f(2) = ln (2^2+3*2+9) = ln(19)

So the global maximum is ln(19) at x=2