How do you find the 3rd root of -1+i?

1 Answer
Jul 8, 2018

The solution is {0.7937+i0.7937, -1.084+i0.2905, 0.2905-i1.084 }

Explanation:

The complex number is

z=-1+i

And we need z^(1/3)

The polar form of z is

z=|z|(costheta+isintheta)

where,

{(|z|=sqrt((-1)^2+(1)^2)),(costheta=-1/|z|),(sintheta=1/|z|):}

=>, {(|z|=sqrt2),(costheta=-1/sqrt2),(sintheta=1/sqrt2):}

=>, theta=3/4pi+2kpi

Therefore,

z=(sqrt2)^(1/3)(cos(3/4pi+2kpi)+isin(3/4pi+2kpi))

So, By De Moivre's theorem

z^(1/3)=(sqrt2)^(1/3)(cos(1/4pi+2/3kpi)+isin(1/4pi+2/3kpi))

When

k=0, =>, z_0=(sqrt2)^(1/3)(cos(1/4pi)+isin(1/4pi))

=(sqrt2)^(1/3)(1/sqrt2+i/sqrt2)

=2^(-1/3)+i2^(-1/3)

=0.7937+i0.7937

k=1, =>, z_1=(sqrt2)^(1/3)(cos(11/12pi)+isin(11/12pi))

=-1.084+i0.2905

k=2, =>, z_2=(sqrt2)^(1/3)(cos(19/12pi)+isin(19/12pi))

=0.2905-i1.084

The solution is {0.7937+i0.7937, -1.084+i0.2905, 0.2905-i1.084 }