How do you find sin(16x) and cos(4x), if you know that cot(8x) = -2 and 8x is an element of II? Thank you in advance!

1 Answer
Nov 16, 2017

sin16x=-4/5, and, cos4x=1/2.sin16x=45,and,cos4x=12.

Explanation:

Given that, cot8x=-2 rArr tan8x=1/(cot8x)=-1/2.cot8x=2tan8x=1cot8x=12.

Recall that, sin2theta=(2tantheta)/(1+tan^2theta).........(star^1),

cos2theta=(1-tan^2theta)/(1+tan^2theta)..........(star^2),

tan2theta=(2tantheta)/(1-tan^2 theta)..............(star^3).

With theta=8x" in "(star^1), we have,

sin(2(8x))=sin16x=(2tan8x)/{1+tan^2 8x)=(2(-1/2))/(1+1/4)=-4/5.

Sub.ing, theta=4x" in "(star^3), we get,

tan(2(4x))=tan 8x=(1-tan^2 4x)/(1+tan^2 4x)." But, "tan8x=-1/2.

:. -1/2=(1-tan^2 4x)/(1+tan^2 4x).

:. 2tan^2 4x-2=tan^2 4x+1, or, tan^2 4x=3.

:. tan 4x=+-sqrt3.

But, pi/2 lt 8x lt pi rArr pi/4 lt 4x lt pi/2. :. tan4x=+sqrt3.

:. sec^2 4x=1+tan^2 4x=4 ;. sec4x=+-2 :. cos4x=+-1/2.

"But, "pi/4 lt 4x lt pi/2. :. cos4x=+1/2.