Given that, cot8x=-2 rArr tan8x=1/(cot8x)=-1/2.cot8x=−2⇒tan8x=1cot8x=−12.
Recall that, sin2theta=(2tantheta)/(1+tan^2theta).........(star^1),
cos2theta=(1-tan^2theta)/(1+tan^2theta)..........(star^2),
tan2theta=(2tantheta)/(1-tan^2 theta)..............(star^3).
With theta=8x" in "(star^1), we have,
sin(2(8x))=sin16x=(2tan8x)/{1+tan^2 8x)=(2(-1/2))/(1+1/4)=-4/5.
Sub.ing, theta=4x" in "(star^3), we get,
tan(2(4x))=tan
8x=(1-tan^2 4x)/(1+tan^2 4x)." But, "tan8x=-1/2.
:. -1/2=(1-tan^2 4x)/(1+tan^2 4x).
:. 2tan^2 4x-2=tan^2 4x+1, or, tan^2 4x=3.
:. tan 4x=+-sqrt3.
But, pi/2 lt 8x lt pi rArr pi/4 lt 4x lt pi/2. :. tan4x=+sqrt3.
:. sec^2 4x=1+tan^2 4x=4 ;. sec4x=+-2 :. cos4x=+-1/2.
"But, "pi/4 lt 4x lt pi/2. :. cos4x=+1/2.