How do you find pOH if [H+] is given?
1 Answer
You'll need two equations for this:
#\mathbf("pH" = -log["H"^(+)])#
#\mathbf("pH" + "pOH" = 14)#
So, all you need to do is take the negative base-10 logarithm of the concentration of
#-log["H"^(+)]#
#=# #"pH"#
#-> color(blue)("pOH" = 14 - "pH")#
If you recall, the autoionization of water works like this:
#\mathbf("H"_2"O" (l) rightleftharpoons "H"^(+)(aq) + "OH"^(-)(aq))#
Then, the equilibrium constant for water is:
#\mathbf(K_w = 10^(-14) = ["H"^(+)]["OH"^(-)])# where
#["H"^(+)]# is the concentration of#"H"^(+)# in#"M"# and#["OH"^(-)]# is the concentration of#"OH"^(-)# in#"M"# .
So, when we take the logarithms and work with this equation, we'd get:
#-cancel(log)_cancel(10)(cancel(10)^(-14))#
#= -log_10(["H"^(+)]["OH"^(-)]) = -log(["H"^(+)]["OH"^(-)])#
Using the properties of logarithms,
#=> -(-14) = 14#
#= -(log["H"^(+)] + log["OH"^(-)])#
#= -log["H"^(+)] + (-log["OH"^(-)])#
But
#=> color(blue)("pH" + "pOH" = 14)#