How do you find #f^-1(x)# given #f(x)=x^2-4x+3#?
1 Answer
Dec 11, 2016
Explanation:
We switch the x-y values by the definition of the inverse function (a reflection over the line
#x = y^2 - 4y + 3#
We now complete the square in order to solve for
#x = 1(y^2 - 4y + 4 - 4) + 3#
#x = 1(y - 2)^2 - 4 + 3#
#x= 1(y - 2)^2 - 1#
#x= (y - 2)^2 - 1#
Solve for
#x + 1 = (y - 2)^2#
#+-sqrt(x +1) = y - 2#
#2 +-sqrt(x + 1) = y#
Hopefully this helps!